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product gases to strike a concentric rigid spherical target are reported.
Alternative equations of state were employed in the calculation (ideal gas
with constant gamma, and ideal gas with variable gamma) and the results
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of the gas at the wall. Representative values for the peak wall pressure at
various distances from the center, for the constant gamme case, are 22,712
Bars at 8.0 cms., 805.6 Bars at 24.0 cms., and 5.37 Bars at 128.4 cms.
Scaling to other distances and charge weights is considered. A 512-1b
pentolite charge, for example, is shown to produce a pressure of 145 psi at
the vall some 26 ft avay. Such a pressure, if spplied to a spacecraft,
would probably destroy it.
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INTRODUCTION

1. In carrying out a program of investigating the characteristics of
blast in a rarefied atmosphere, it is useful to have available a description
of the limiting case of zero density in the medium surrounding the charge;
that is, an explosion in vacuum. 1In this case, the explosion consists only
of the rapidly expanding detonation products, and the loading produced upon
a target is the result only of the impacting detonation gases, without the
usual atmospheric blast wave. Numerical calculations have been carried out
at NOL on the IBM-TO4 digital computer to determine the characteristics of
chemical explosions in vacuum, and the resulting loadings on a rigid target.

2. The computational code used is capable of solving time-dependent
problems in one space dimension with plane, cylindrical, or spherical
symmetry. To effect a compromise between the complex configurations occur-
ring in cases of practical interest and the capabilities of the machine code,
the following geometry was decided upon: A spherical charge of high explo-
sive (in this case, pentolite) is detonated at its center, and the detona-
tion products expand outward with spherical symmetry. At a given distance
from the origin of coordinates (vwhich is at the center of the charge) is a
rigid, spherical wall, concentric with the surface of the spherical charge.
The quantities computed are the pressure and energy of the gas as functions
of distance and time; and the pressure-time history of the gas at the rigid
target.

INITIAL CONDITIONS

3. The computation is begun at the instant the detonation shock
reaches the surface of the explosive. It is thus necessary to know the
conditions existing in the explosion products at the completion of the
detonation process, since these quantities must be used as the initial
conditions for the calculation of the expansion. The method used to obtain
these initial conditions is that of G. I. Taylor, who solved the problem of
determining the mechanical and thermodynamic parameters behind a detomation
shock by postulating a similarity solution where all quantities are given as
functions of r/t n?rer. (a)). It should be noted that the Taylor solution
assumes that a spherical detonation wvave may be considered to be a stable
shock of zero width, proceeding radially outward with constant detooation
velocity, and initiating chemical reaction in the material over which it
sweeps. Conditions change discontinuously across the shock, and in particu-
lar, the substance in front of the shock is completely unreacted, whereas
material just behind the shock is completely reacted. Refinements in this
detomation concept, such as considerations relating to the existence of a
finite reaction zone behind the detonation shock, are not taken into account
in this treatment.
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L. A machine code that uses the ideas of the Taylor treatment has been
written at NOL (ref. (b)), and it 1s this code that is used to furnish the
initial conditions for the calculation of the expansion of the explosion
products.

EQUATION OF STATE

5. Many attempts have been made to develop a satisfactory equation of
state for the burnt gases behind the detonution shock, ranging from simple
perfect gas equations to elaborate solid state equations. It was felt that
excessively complex equations of state would not be suitable for the present
study, and instead, reliance has been placed on certain results of Deal
(ref. (c), (a)) and considerations of Fickett and Wood (ref. (e)) that
furnish some evidence to support the belief that, for certain explosives, a
constant-gamma, ideal gas law may be used for detonation gas pressures above
500 bars. The gaxme for these gases is usually equal to approximately 3.
Since, however, we are concerned here with an expansion of the burnt gases
into a vacuum, the pressure will certainly fall well below 500 bars, and the
equation of state must be extended into this low pressure region.

6. One possibility that immediately suggests itself is simply to let
7 be constant over the whole range of pressures encountered in the problem.
Another procedure is to take advantage of the fact that at extremely low
pressures, gases tend to behave ideally, with a constant value of 7y dester-
mined only by the molecular structure of the substance. Since the detona-
tion gases will contain, in general, mixtures of diatomic and triatomic
gases, the value of ¥ will be an average, on a molar basis, of various ideal
gas gammas. A representative value for the y of detonmation gases at low
pressure is 7 = 1.35. The procedure is, then, to construct a function that
gives 7 as a function of pressure, p, and has the following properties (the
particular constants chosen refer to the explosive pentolitef

7y = 2.682 (for pentolite) = 7, P=Ppy = 1000 bars

7= 1‘35 = 71 PSPl = 100 bars
gz- -
& 0 P 1000 bars
. -
dp 0 P 100 bars




NOLTR 62-19

The curve representing this function has the general appearance of Figure 1.

~

71 = 1'35

1
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(a) : 7, = 2.682
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|
|
|
|
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— e e fe an e e e o s o ww -

100 bars 1000 bars
Fig. 1 General Form of 7 Versus p Curve

The section (A) of this curve is fitted by a cubic equation:
yaA +ADP+ADPE+ ApS (1)
o TAPTAR 3P

vhere the constants l\1 are given by

2
_T2P (B -3 -7, % (R -3y

. 6P1P2 (7 - 7,)
(»y - p2)3

!

A
2 (r, - p,)>
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oy, - 7)
(o, - pp)°

7. The functiomal form (1) for 7 = 7(p) is then used in the ideal gas

equation of state - v
E -(-2—)-7 1

vhere E = Energy/gm
P = Pressure
V¥V = Specific volume.

Thus , two schemes have been suggested for construction of the equatiom of
state, one vhich utilizes & value of 7 vhich is comnstant over the complete
Pressure range, and another vhich fits the interval between a constant high-
Ppressure 7 and a constant low-pressure 7 by means of a cubic curve giving 7
in terms of pressure. Nost calculations have been carried out using both
forms, so that an indication may be obtained of how sensitive wvarious parem-
eters of interest are to the choice of equation of state.

DESCRIPTION OF THE NUMERICAL COMPUTATION

8. The computations were carried out on an INN-TOhk Adigital computer,
using & revised version of the "KO-CODE," a hydrodynsmic code originmally
de at the lawvrence Radiation Iaboratory, Livermore, California
(ref. (£)). The prototype difference equations are those of von Nevwsann
and Richtmyer, and the technique wsed to allow tion beyond shocks is
the von Newmann artificial viscosity method (ref. (g), (h)). In this method,
& quantity amalogous to & viscosity is introduced into the equations for the
purpose of smoothing discontinuous shocks 80 that they extend over a fixed
number of spatial zones while maintaining the walidity of the Rankine-
Rugoniot equations, which relate pareamsters om both sides of the shoek.
Consequently, the machine program does not find it necessary to deal with
discontinmuous changes in the calculated quantities, and any shocks that
appear in the problem are properly propagated, although witn some rounding
of the normally steep shock front.

9. The calculation is carried out by dividing the spherical region
into a given number of spatial zones, not necessarily all of the same radial
length. At each interface a mass particle is localized and a given particle
will always remain at the same interface. Each mass particle bhas associated
with it a wvelocity, so that velocities are calculated at the interfaces;
quantities like pressure, specific volume, and total energy density are
localized in the regions between interfaces, that is, at the centers of
spatial zones.
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10. When the expanding gases reach the spherical waell, the velocity of
the boundary is set equal to zero, and the kinetic energy thus lost is added
to the last spatial zone as internal energy, thus raising the pressure in
-this last zone. The pressure continues to rise as the gases move toward the
wvall, and a compression shock moves inward toward the origin.

11. The NOL computing facility includes equipment for the display on
a cathode ray tube screen of various quantities as they are computed.
Photographs of such 1lots are presented in this report, and include distri-
butions of pressure and energy density with distance at various times.

RESULTS

12. Before numerical dats are presented, a brief qualitative descrip-
tion of the results will be given. Upon the completion of the detonation
process, the explosion gas expands into the vacumm, with a consequent drop
in pressure at the gas boundary and an increase in the velocity of the
boundary. The pressure at the gas-vacuum interface quickly drops to an
essentially zero valus, and the boundary acquires & constant radial velocity.
As the gas expands, the kinetic energy in the system increases, at the
expense of the internal energy. When the gas boundary strikec the wall, a
compression shock is formed that proceeds inwvard tovard the origin. At any
given time, the pressure between the shoeck and the wall appears to be fairly
constant, though this constant level decresses with time. As the shock pro-
ceeds inward, most of the kinetic energy of the gas is converted back into
internal energy. When the reflected shock reaches the origin, it is
reflected back into the gas as another compression shock. These shocks are
reflected back and forth between the wall and the origin until sowme sort of
stable equilibrium is reached. 3Since the entire process takes place within
& fixed, constant volume, it is expected that the final equilibrium state
is one of statiomary gas, with energy, pressure, and volume relaicd by the
ideal gas lav having the appropriate value of y. HNHowever, the computations
reported wpon here do not go far enough in time to demonstrate this final
squilibrium.

13. The calculations made refer to a one-pound sphere of pentolite,
density = 1.65 gu/ce, detonnted at its centar, for various values of wall
distance. Presscure and energy density curves are given in Figurco 8-11,

plotted agaeinst radial distance from the origin.

1k, Bach point represents the valwe of the quantity being considered
at a point half-way between the positions of adjacent mess points, and
always remains associated with the same two mass points. Thus, the plots
present not only a pressure (or energy) versus distance picture, but also
indicate the motion of the mass particles in time. Theaenergy quantity
plotted is an energy per wunit volume, multiplied by kar“, where r is ths
radial distance from the origin. Thus, the area under the curve between
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any two radial distance values is equal to the energy contained in the cor-
responding portion of the system. The interchange between internal and
kinetic energy thus becomes clearly visible from the plots.

15. One can see from the pressure plots the rounding of the shock
front and the pressure oscillations immediately behind the shock front;
these are characteristics veculiar to the particular computational method
used, namely the von Neumenn-Richtmyer "q" method.

16. 1In the tables, numerical results are given for various wall
distances from the origin. The quantities listed are time, in microseconds,
with the zero of the time scale being taken as the instant in which the
detonation shock reaches the outer surface of the explosive charge; the
kinetic energy, internal energy, and total energy (in megabars-cm3) present
in the system at a given time; and the shock position (in centimeters) and
wall pressure (in bars), as functions of time. Due to the finite difference
method of calculation, the total energy is not exuctly conserved, as it
should be in & precise computation. The range of variation of the total
energy can be seen to be small relative to the magnitule of the energy
transferred between the kinetic and internal modes. Table 1 and Table 2
both refer to a wall at 8.0 centimeters, but the calculations given in
Teble 2 use the alternative variable 7 equation of state. Tables 3, 4, and §
refer to walls at the distances 16.0 cms., 24.0 cms., and 32.85 cms., respec-
tively, and 2ach represents a tabulation using the constant gamma equation of
state. Figures 2-6 present plots of the wall pressure versus tim: for various
wall distances, using both forms of the equation of state. For small wall
distances, where the pressure at the wall remains well above 1000 bars, the
two calculations give fairly identical results. However, for intermediate
distances, when the wall pressure lies in the 100-1000 bar range, the results
begin to diverge, and for large wall distances, with pressures well below 100
bars, the variable ¥ equation of state gives substantially lower pressures.
This behavior can be seen most clearly from Figure 7, which gives the peak
wall pressure versus distance, for both equations of state. The true equation
of state probably yields curves which lie between these two extremes.

SCALING

17. The only characteristic length that appears in this problem is the
initial charge radius, and therefore all lengths my be expressed in terms
of this quantity. Furthermore, the initial distribution of mechanical and
thermodynamic parameters (that is, the Taylor Wave) depends only on the
properties of the solid explosive and is self-similar with respect to the
charge radius. Consequently, the results given in this report for specific
distances, times, and explosive weights also apply to situations in which
times and distanceg are multiplied by a factor k, and the explosive weight
is muitiplied by k7. For example, it can be seen from Figure 7 that for one
pound of pentolite, a peak pressure of 10 bars (145 psi) is obtained at the
wall when the wall is approximately 100 cms. from the origin. Thus, a S512-
pound pentolite charge (k=8) will generate a pressure of 145 psi at & wall
located approximately 800 cms. or 26 feet, from the center of the charge.
Such a pressure is believed to be high enough to desroy & spacecraft.

6
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CONCLUDING REMARKS

18. The results presented here comstitute a preliminary investigation
of the loading of structures by explosions in rarefied atmospheres. The
next step is to run calculations with air of varying densities in the space
between the explosive and wall, and to study the air or blast effect. It
would also be extremely interesting to substitute for an idealized rigid
target, a substance that may be compressed, or that may be pushed as a
result of the explosion. Another goal for the future is the use of more
practical geometries, perhaps with the use of 2-dimensional machine codes,
and more sophisticated equations of state for the detonation gases, such as
that of Kistiakowsky and Wilson.
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Table 1

WALL AT 8.0 CENTIMETERS; 7y = 2.682
ONE POUND PENTOLITE

Kinetic Internal Total Shock Wall
Time Energy Energy Energy Position Pressure
(usecs) €&——(Megabars-Cm3)——> (Cums) (Bars)
4.939 (Wall Struck)
5.019 15.7hs 5.231 20.976 T.559 3753.9
6.840 11.587 9.602 21.189 T.037 18212.0

7.954 9.178 12.007 21.185 6.890 21628.1
8.951 7.438 13.752 21.190 6.662 22603.8

10.028 6.004 15.181 21.185 6.400 22712.4
11.008 5.033 16.147 21.180 6.087 22096.0
12.031 4,242 16.934 21.176 5.961 21401.0
13.016 3.578 17.597 21.175 5.630 20648.7
14.016 2.925 18.249 21.174 5.325 19934.7
15.031 2.306 18.866 21.172 5.220 19310.1
17.019 1.338 19.829 21.167 L4 .80k 19062.1
18.542 0.825 20.338 21.163 4.332 19300.8
20.022 0.487 20.674 21.161 3.994 19348.7
21.037 0.339 20.819 21.158 3.768 1907k .0
22.010 0.277 20.879 21.156 3.512 18736.3
22.518 0.2711 20.884 21.155 3.511 18642.8
23.025 0.260 20.874 21.154 3.261 18421.5
2.0kl 0.330 20.823 21.153 3.002 18092.6
25.018 0.407 20.ThS 21.152 2.723 17797.

27.042 0.619 20.532 21.151 2.031 16920.9
28.021 0.715 20.436 21.151 1.616 16660.4
29.268 0.787 20.366 21.153 0.733 16336.5
30.250 0.732 20.422 21.154 0.191 16028.6

First Shock Reaches Center

31.015 0.589 20.568 21.157 1.37h 15582.0
32.286 0.449 20.709 21.158 1.88s 15066.6
33.264 0.323 20.835 21.158 2.565 14469.3
k.27 0.232 20.925 21.157 2.826 14264 .4
35.196 0.178 20.979 21.157 3.270 14126.7
39.169 0.226 20.927 21.153 4,869 13308.3
41.687 0.461 20.690 21.151 6.018 13272.5
Ly 213 0.662 20.491 21.153 T.757 15711.1

Reflected Shock Reaches Wall

18




Table 1 (Cont'd)
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Kinetic Internal Total Shock Wall

Energy Energy 3 Energy Position Pressure
(usecs) &———(Megabars-Cm>)—————> (Cms) (Bars)
46.701 0.400 20.756 21.156 6.479 19734.3
h9.192 0.183 20.971 21.154 5.571 19701.0
51.683 0.119 21.035 21.154 4.816 18890.0
SL.1Th 0.148 21.005 21.153 3.977 17887.8
56.712 0.237 2.915 21.152 3.247 17052.1
59.203 0.368 20.785 21.153 2.179 16369.2

Reflected Shock Reaches Center

61.693 0.116 20.738 21.154 1.078 15830.9
64.171 0.178 20.978 21.156 1.6T4 15266.4
66.715 0.093 21.061 21.154 2.916 14912.2
69.206 0.131 21.022 21.153 4.110 14606.4
T1.698 o.a7 20.936 21.153 4,995 14387.0
T4.190 0.3k 20.840 21.154 6.099 14488.3
76.681 0.358 20.798 2.1 7.766 17132.0

19
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Table 2

WALL AT 8.0 CENTIMETERS; V)

OIIIPGIIDPM'OBI/'I.;

iable y

Kinetic  Internal  Total Shoek Wall

Time Energy Energy Energy Position Pressure
(usecs) (————(Llegabars-Cm3)———> (Cms) (Bars)

4.984 (Wall Struck)

5.514 14,747 6.499 21.246 7.486 11333.3

6.507  12.473 8.775 21.249 7.152 16231.1

7.993 9.187 12.053 21,240 6.902 21629.6
8.989 7.470 13.776 21.246 6.669 22385.9
10.015 6.085 15.156 a.2n 6.406 22476.4
11.006 5.085 16.152 22.237 6.096 22a31.2
12.02161 2.3036 18.292 21.228 2.230 136382.1
16.01 1.805 19.420 21.225 .933 1 .3
16.443 1.603 19.621 2,224 4.877 19168.2
19.020 0.705 20.513 a.a8 4.356 19431.3
22.028 0.279 2.932 2.211 3.512 18704k.2
25.036 0.414 20.792 21.206 2.716 1T746.6
25.380 0.ku48 20.759 21.207 2.696 17521.3
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Teble 3

WALL AT 16.0 CENTIMETERS; 7y = 2.682
ONE POUND PENTOLITE

Kinetie Internal Total Shock Wall
Time Energy Energy 3 Energy Position Pressure
(nsecs) &——(Megavars-Cm’)———> (Cms) (Bars)
14,892 (Expanding Gases Strike Wall)
16.243 19.042 2.2717 2.319 14,499 1075.8
21.223 13.817 7.508 2.325 13.290 1966.5
26.262 9.104 12.214 2.318 12.397 2447.3
33.757 4.653 16.653 21.306 11.197 2506.8
43.745 1.091 20.201 21.292 9,660 2644 .14
50.727 0.315 20.971 21.286 8.231 2561.4
55.737 0.481 20.800 21.281 7.230 2395.4
60.729 0.950 20.328 21.278 5.435 2212.7
65.733 1.428 16.852 21.280 3.601 2056.1
68.198 1.546 19.737 21.282 1.638 1976.1
Reflected Shock Reaches Center
73.305 1.0k 20.251 2.292 3.980 1763.9
78.209 0.468 20.824 21.292 6.141 1663.2
83.239 0.210 2.07T7 21.287 8.208 1555.4
88.270 0.uk2 20.8L40 21.282 10.085 1507.0
93.300 0.959 20.323 21.282 12.4912 1485.7
98.21h4 1.270 20.022 21.292 15.453 2259.3
Reflected Shock Reaches Wall
100.785 1.063 20.229 21.292 13.138 2434.2
105.763 0.645 20.6k6 21.291 11.432 2507.5
110.755 0.323 20.967 21.290 10.279 2450.2
115.747 0.155 2.133 21.288 9.087 2399.5
120.739 0.200 2.087 21.286 T.760 2336.4
0.4hs 20.8k0 21.265 5.752 2231.6

125.731
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Table 4

ONE POUND PENTOLITE

Kinetic Internal Total Shock Wall
Time Energy Energy Energy Position Pressure
(usecs) €——(Megabars-Cn’)———> (Cms) (Bars)
24.848 (Expanding Geses Strike Wall)
27.859 18.861 2.455 21.316 21.785 265.4
29.085 18.11k 3.241 21.355 21.201 379.4
34.150 1L4.668 6.685 21.353 20.158 515.6
39.122 11.468 9.880 21.348 19.005 636.7
41.630 10.051 11.297 21.348 18.748 673.5
46.601 7.687 13.655 21.342 18.081 k.1
51.598 5.819 15.516 21.335 16.734 T726.6
61.372 2.760 18.581 2.34 15.601 731.0
66.430 1.630 19.706 21.336 14.826 T13.4
T1.378 0.867 20.465 2.332 14.33% 805.6
76.381 0.428 20.900 21.328 13.194 T%.9
81.383 0.301 21.022 21.323 12.643 T65.7
91.377 0.775 20.5%1 21.316 9.560 693.9
101.487 1.567 19.749 21.316 5.835 618.4
106.433 1.810 19.511 22.32 2.623 579.6
108.864 1.800 19.522 21.322 0.TTT 561.2
Reflected Shock Reaches Center
111.403 1.584 19.743 21.327 2.713 535.2
113.922 1.330 20.003 2.333 5.335 517.8
115.741 1.142 20.192 21.334 6.740 501.3
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Table 5

849 CUNTIMETERS; 7y = 2.682

Time
secs
35.795
41,547
46.509
51.551
56..484
61.455
66.503
T1.551
76.599
86.557
91.567
96.590
101.524
106.580
111.57k
116.569
121.563
129.107
141,446
146.455
148.986
151.403

ONE POUND PENTOLITE
Internal Total Shock Wall
Energy Energy Position Pressure
<————(Megabars-Cn’)———> (Cms) (Bars)
Expanding Gases Strike Wall)

. 3.297 21.450 28.662 139.076

. 5.628 21.451 27.710 174.486

. 7.995 21,448 26.824 215.729

. 10.152 2a.443 25.801 245.894

. 12.065 2.442 24.655 265.639

. 13.707 2.435 24,461 275.381

. 15.090 2.429 23.266 279.206

. 16.342 2a.427 22.362 260.554

. 18.597 .19 21.257 285.34h
1.946 19.470 2.56 20.673 208.743
1.257 2.156 2.43 20.002 314.907
0.763 20.647 2.410 19.197 318.806
0.440 20.966 2.406 18.165 316.14)
0.297 21.106 21.403 17.466 308.708
0.326 2.073 2.399 16.549 299.212
0.487 20.910 2.397 15.537 288.742
0.804 20.501 .39 13.232 2n.972
1.660 19.734 21,39, 8.151 243.706
1.890 19.507 21.397 5.856 232.512
1.953 19.446 21.399 3.608 225.779
1.956 19.44s 2.401 1.143 220.213




(a)

(v)
(e)
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